We use cookies
To help provide you with a good experience on our website. By continuing to browse the website, you are agreeing to our use of cookies.

Fraunhofer ISE produces hydrogen via PEM electrolyzer with seawater


Fraunhofer ISE produces hydrogen via PEM electrolyzer with seawater

Scientists from the Fraunhofer Institute for Solar Energy Systems ISE have developed a technical concept and design for a hydrogen generation plant optimized for use at sea. The “OffsH2ore” project aims to define a technically and economically optimized design for an integrated offshore hydrogen production plant using proton exchange membrane (PEM) electrolysis, including the transport of the compressed hydrogen gas to land.

Source: PV-Magazine

The power supply for the electrolysis comes from an offshore wind farm directly connected to a 500 MW electrolysis platform. The platform can produce up to 50,000 tons of green hydrogen per year. Fresh water for the PEM electrolyser is obtained by desalinating seawater using residual heat from electrolysis.

The produced hydrogen is purified and dried, compressed to 500 bar, and transferred to a transport vessel that can carry up to 400 tons of hydrogen from the platform to the mainland. This concept is independent of the hydrogen transport pipeline and offers flexibility in the choice of location.

The results show that the production of hydrogen directly in the sea with a PEM electrolyzer is technically and economically feasible. With the concept presented by the consortium, rapid and large-scale implementation is realistic.

The project was funded by the German Federal Ministry for Economic Affairs and Climate Protection.

The concept guarantees the production of hydrogen without territorial competition.

Offshore hydrogen production offers the opportunity to cover the entire value chain at the national level while decoupling the expansion of offshore wind energy and the expansion of the grid.

Marius Holst, the project coordinator

To determine the costs of hydrogen production, the first step was to determine the cost-optimal capacity of the offshore wind farm based on the electrolysis capacity of 500 MW. The minimum hydrogen production costs result from a wind power of 602 MW. In this case, they amount to 5.92 EUR/kg with just under 5,000 full charge hours of electrolysis.

Hydrogen production costs increase and full charge hours decrease with lower wind capacity. For example, a wind farm with a capacity of 490 MW results in hydrogen production costs of €6.37 ($7.04)/kg and full load hours of around 4,225 h/a. As a result of the lower wind capacity, the 500 MW electrolysis is significantly oversized and can no longer operate at a nominal load.

The consortium that worked on the project included Fraunhofer ISE, PNE AG as project coordinator, SILICA Verfahrenstechnik GmbH, KONGSTEIN GmbH, and Wystrach GmbH.

Scientists from Australia's University of Adelaide recently discovered a way to produce hydrogen directly from untreated seawater. For this, they introduced an acid layer on the catalysts in situ.

Relevant news

Essar announces Europe's first hydrogen-ready power plant to be built by 2027
Discover how Essar's investment in EET Fuels and EET Hydrogen Power will contribute to decarbonization goals and reduce carbon dioxide emissions.
Wood to optimise hydrogen storage for Centrica’s Rough field
Wood secures a contract from Centrica Energy Storage to refurbish the UK's Rough field for potential hydrogen storage.
Lhyfe has been awarded a €11m grant from Klimatklivet for its green hydrogen project in Sweden
Learn about Lhyfe Trelleborg and their new plant that will produce green hydrogen.
Wärtsilä 100% H2-ready engine power plant
Discover the innovative hydrogen-ready engine power plant by Wärtsilä, offering flexible power generation and optimal load-following capabilities.
John Cockerill raises €230m for hydrogen business
Manufacturer’s funding round with SLB and several other investors will close at the end of June
Yara opens renewable hydrogen plant in Norway
Yara is now producing renewable hydrogen and ammonia at Norway plant.